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[1] A remote-sensing method for reconstructing the reconnection rate and the location of
X-line from single-spacecraft observations developed recently is extended to a
compressible plasma and an asymmetric magnetic field configuration. The method is
based on the two-dimensional analytical model of time-dependent Petschek-type magnetic
reconnection. The reconstruction technique is applied to a nightside flux transfer event
recorded by Cluster spacecraft in the near-Earth magnetotail on 26 September 2005. The
reconnection rate is found to be 3.7–4.8 mV/m; the reconnection distance is around 9–
11 Re in the tail.
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1. Introduction

[2] Observational phenomena referred to as flux transfer
events (FTEs) were first observed during crossings of the
magnetopause made by the ISEE 1 and 2 spacecraft
[Russell and Elphic, 1978]. These are transient, �1-min
timescale disturbances characterized by an isolated bipolar
variation of the magnetic field component normal to the
current sheet and a simultaneous deflection in the tangen-
tial components. They were interpreted as disturbances
caused by a magnetic flux tube connecting the interplan-
etary and the Earth’s magnetic fields and moving along the
magnetopause with a speed greater than the ambient
plasma flow [Russell and Elphic, 1978]. FTEs are consid-
ered to be manifestations of unsteady (impulsive) recon-
nection at the dayside magnetopause.
[3] The term NFTE was introduced [Sergeev et al., 1992]

to emphasize the impulsive nature and profound similarity
between magnetopause FTEs and magnetotail reconnection
events. NFTE is topologically different from the so-called
plasmoid or flux rope. Both objects (plasmoid/flux rope and
NFTE structure) are bulges with a typical scale of a few Re
propagating in the plasma sheet and producing similar
perturbations in the tail lobes: the bipolar Bz variation
(where z is the direction normal to the current sheet) and

the Bx compression over the bulge. However, unlike the
plasmoid/flux rope (which have a closed loop magnetic
structure) the NFTE bulge carries locally open magnetic
flux (see Figure 1). As a consequence, the bipolar Bz

signature of NFTEs is typically asymmetric. Though the
remotely observed signatures of the objects compared are
basically similar, they are interpreted from different points
of view: NFTEs are considered to be manifestations of
impulsive reconnection on a single X-line, whereas varia-
tions associated with plasmoids/flux ropes are interpreted on
the basis of MXR reconnection model (multiple X-line
reconnection) characterized by the simultaneous existence
of two (or more) X-lines.
[4] Analysis of FTEs/NFTEs may provide information

about the geometry of the reconnected flux tubes and the
reconnection process responsible for their generation. Since
spacecraft trajectories sometimes miss a moving flux tube
and sample only perturbations outside [Farrugia et al.,
1987], the analysis is usually applied to perturbations
caused by field line trapping around the flux tube (the
bulge), in which case we talk of remote sensing. Modeling
this trapping by an isentropic field-aligned MHD flow over
gently sloping two-dimensional (2-D) obstacle, Walthour et
al. [1993, 1994] developed a technique to recover cross-
sectional size, shape, orientation, and speed of propagation
of FTE structures. Unfortunately, the technique do not
suggest any estimation of the most important parameters
of reconnection: the rate and the location of the X-line. A
method based on the plasmoid interpretation of reconnec-
tion events was suggested by Hu and Sonnerup [2001,
2003] and Hasegawa et al. [2006]. It allows to reconstruct a
magnetic map of a plasmoid and is based on a numerical
solution of the Grad-Shafranov equation, which describes
the evolution of space plasma structures in quasi-static
equilibrium. As initial values for the Grad-Shafranov equa-
tion, magnetic field and plasma data collected by spacecraft
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along some trajectory are used. However, an essentially
time-dependent process, like reconnection, can hardly be
understood in the quasi-static approach. One more tech-
nique was introduced by Fuselier et al. [2005], providing a
snapshot of the reconnection inflow velocity into the
magnetosphere and an estimate of the distance from the
spacecraft to the reconnection site. These two quantities are
not obtained independent of one another, and some addi-
tional information is needed to separate them. Being based
on a reconnection geometry at the magnetopause rather than
on a physical model, the method requires at least two
spacecraft staying in a reconnection layer at the same time.
[5] Recently, a new remote sensing method for recon-

structing the reconnection rate and the location of X-line
from single-spacecraft data was suggested and applied to
three NFTEs recorded by Cluster spacecraft in the Earth’s
magnetotail on 8 September 2002 [Semenov et al., 2005].
From the mathematical point of view, such a reconstruction
is an inverse problem: if the reconnection rate E(t) is known,
one can compute the temporal profile of the magnetic field
B(t) (direct solution); conversely, if B(t) is known, the
reconnection rate E(t) can be recovered (inverse solution).
To invert the problem an analytical representation of the
corresponding direct solution is needed. The analytical
model of reconnection developed by Semenov et al. gen-
eralizes the classic Petschek mechanism [Petschek, 1964]
for the nonstationary case and provides a family of direct
solutions: 2-D [Heyn and Semenov, 1996] and 3-D
[Semenov et al., 2004], compressible and incompressible.
The model predicts an asymmetric bipolar variation in the
magnetic field component normal to the current sheet, a
simultaneous deflection in the tangential component, and a
change from upward (away from the current sheet) to
downward flow in the normal component of plasma velocity,
typical for FTE/NFTE disturbances.
[6] The reconstruction method developed by Semenov et

al. [2005] exploits the most simple variant of the model,

namely, 2-D symmetric reconnection in an incompressible
plasma. In the present study the method is generalized to
include plasma compressibility and possible asymmetry of
plasma and magnetic field parameters. Additionally, the
accuracy of the reconstruction code has been improved
substantially. As a result, numerical noise has disappeared
and the range of the code applicability has been expanded.

2. Model

[7] In the frame of the time-dependent Petschek-type
model [Heyn and Semenov, 1996; Semenov et al., 2004]
reconnection is initiated by a local time-varying electric
field E(t). A typical initial configuration for reconnection
consists of two plasma domains with oppositely directed
magnetic fields B0 and ~B0 separated by a current sheet. The
whole space splits into two different areas: a convective
region, where diffusion effects are neglected and the plasma
is considered to be ideal, and a vanishingly small diffusion
region, where some kind of dissipative process may depress
the conductivity thus leading to an electric field E = j/s ( j is
the current density, s is the plasma conductivity). As a
consequence, the frozen-in property breaks down allowing
the magnetic field to reconfigure. The rate at which mag-
netic field lines reconnect is defined by the dissipative
electric field E(t). The question about the precise dissipative
mechanism responsible for this field lies outside the model.
Since no analytical relation between this mechanism and the
electric field is available, the reconnection rate E(t) is taken
as an arbitrarily prescribed function. A natural restriction for
this function is the causality: E(t) � 0 for t � 0.
[8] To obtain an analytical solution describing further

evolution of the magnetic field and plasma configuration
several simplifying assumptions are introduced: (1) The
plasma domains are uniform. (2) The current sheet, being
infinitely thin, is approximated by a tangential discontinuity.
(3) The reconnection is ‘‘weak,’’ that is, the reconnection
electric field E(t) is much smaller than the electric field
based on the Alfvén velocity and the background magnetic
field EA = vAB0/c [Petschek, 1964].
[9] The term ‘‘weak’’ does not mean that the work on

plasma is accomplished in a weak manner. On the contrary,
regardless of a precise value of the reconnection electric
field E(t) plasma is accelerated to the Alfvén velocity. The
electric field value influences only the total amount of
accelerated plasma. Unlike the first two assumptions (which
are rather crude for the case of the magnetosphere) the
approximation of weak reconnection is realistic. Different
numerical simulations including MHD, Hall MHD, full
particle, and hybrid simulations have shown that the recon-
nection rate is typically of the order of E � 0.1–0.2 EA

[Birn et al., 2001]. The restriction of weak reconnection
allows to apply a linear perturbation theory expanding in
powers of the small parameter e = E/EA.
[10] The time-varying electric field arising in the diffu-

sion region owing to the local decrease of conductivity
launches MHD waves in the surrounding medium. Fast
mode waves propagate away from the reconnection site and
stimulate plasma convection toward the current sheet.
Plasma flows entering the current sheet from both sides
violate mass conservation for a tangential discontinuity. To
make space for a sink of plasma the current sheet broadens

Figure 1. Magnetic structure of the NFTE bulge (accord-
ing to the model of time-dependent Petschek-type reconnec-
tion) and of the plasmoid/flux rope (according to the model
of multiple X-line reconnection).

A10226 IVANOVA ET AL.: RECONSTRUCTION OF THE RECONNECTION RATE

2 of 10

A10226



into a system of several MHD discontinuities and shocks
[Heyn et al., 1988], which collect the plasma flows and
deflect them along the current sheet. In that way two shock
structures (left and right) develop filled with accelerated and
heated plasma streaming along the current sheet in opposite
directions (Figure 2). These structures are referred to as field
reversal (FR) or outflow regions. The outer area, where
plasma enters from, is named the inflow region.
[11] The curved, water-drop shape of FR regions is due to

time variations of the reconnection rate E(t), unlike the
original Petschek model, where the rate is constant and FR
regions are bounded by straight shocks. Another distinctive
feature of time-dependent reconnection is the subdivision of
the whole process into two stages: the switch-on phase and
the switch-off one. The switch-on phase proceeds, while the
electric field in the diffusion region operates leading to the
initial decay of the current sheet and the formation of
the outflow regions. After the electric field drops to zero
and the reconnection switches off, FR regions detach from
the reconnection site and propagate away in opposite
directions. The volume occupied by the outflow regions
grows since it continues to accumulate the ambient plasma.
[12] Within the restriction of ‘‘weak’’ reconnection the

FR region is strongly elongated along the current sheet and
may be treated as a boundary layer. The number and the
type of discontinuities that form the layer depend on the
initial configuration (2-D or 3-D, symmetric or asymmetric)
and on whether plasma is compressible or not. In a 2-D
geometry with moderate asymmetry and compressible
plasma the FR structure consists of two slow shocks S, ~S
(which change the magnetic field strength and accelerate
plasma), one Alfvén discontinuity A (rotating the magnetic
field through the angle p), and a contact discontinuity C
(responsible for the density jump) following each other in
the order SC~S~A (Figure 2). It should be mentioned that we

neglect the formation of fast shocks because the total
pressure across the boundary layer is constant (to the second
order of e), and hence there is no pressure gradient that can
drive a fast shock. The Alfvén discontinuity always devel-
ops at the side with smaller Alfvén velocity (the lower
domain here). Each discontinuity propagates with its own
de Hoffmann-Teller velocity and, as a result, the outflow
regions are deformed in time.

2.1. Direct Problem

[13] Perturbations of MHD quantities caused by the
moving FR structures in the inflow region can be found
from the set of compressible ideal MHD equations linear-
ized with respect to the constant background. The final
expressions describing the time behavior of magnetic field
perturbations at a given point (x, z) in 2-D geometry have a
form of integral representations, which relate the perturba-
tions with the reconnection rate E(t) [Heyn and Semenov,
1996; Semenov et al., 2004]:

Bz t; x; zð Þ ¼ B0

p
Re

Z
C

ds
~L

Lþ ~L
Q sð Þ is E t 	 t sð Þð Þ; ð1Þ

Bx t; x; zð Þ ¼ B0

p
Re

Z
C

ds
~L

Lþ ~L
Q sð Þq sð ÞE t 	 t sð Þð Þ: ð2Þ

[14] The integrand here is complex, all functions depend
on a complex variable s. The integration is carried out in the
complex s plane along a special contour defined below.
[15] Throughout the paper, all quantities are normalized

with respect to the background magnetic field B0, the zero-
order Alfvén velocity va, and the time duration of the
electric field pulse. Functions L(s) and q(s) depend on the
medium parameters such as the constant background den-
sity r0 and zero-order values of the Alfvén speed va, the
sound speed cs, and the sum of their squares u2 = va

2 + cs
2:

L sð Þ ¼ 	r0
1þ v2as

2

q sð Þ ; q sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2s2 þ v2ac

2
s s

4

u2 þ v2ac
2
s s

2

s
:

L(s) is evaluated for the upper half-space z > 0 and ~L(s) is
evaluated for the lower one.
[16] Q(s) is the source (sink) function, which involves all

discontinuities and shocks launched by reconnection and
thus defines the internal structure of FR regions:

Q sð Þ ¼ 1

BSC

	 1

B0

� �
wþ

S

1þ iswþ
S

	 1

BSC

	 1

B0

� �
w	

S

1þ isw	
S

þ 1

B~S~A

	 1

BC~S

� �
~wþ
S

1þ is~wþ
S

	 1

B~S~A

	 1

BC~S

� �
~w	
S

1þ is~w	
S

þ 1

~B0

	 1

B~S~A

� �
~wþ
A

1þ is~wþ
A

	 1

~B0

	 1

B~S~A

� �
~w	
A

1þ is~w	
A

:

[17] Here wS, ~wS, ~wA are the de Hoffmann-Teller veloc-
ities of the slow shocks and the Alfvén discontinuities,
respectively. Plus and minus symbol superscripts refer to

Figure 2. Initial tangential discontinuity, separating two
uniform plasma domains with different densities r0, ~r0 and
opposite magnetic fields B0, ~B0, decays into a system of
MHD discontinuities and shocks: S, C, ~S, ~A. A typical
structure of FR regions is shown at the moment t = 3
(switch-off phase). The regions detached from the recon-
nection site and propagate in opposite directions.
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discontinuities propagating to the right x > 0 and to the left
x < 0 from the diffusion region. The layers between the
discontinuities are characterized by a tangential magnetic
field marked by a subscript indicating the boundaries. For
example, SC is the layer between the slow shock and
contact discontinuity (Figure 2). The only coordinate-
dependent function is

t sð Þ ¼ q sð Þz	 isx; ð3Þ

where x and z are counted from the reconnection site located
in the origin (0,0).
[18] All poles and branch points originating from the

complex integrand lie on the imaginary axis. The branch
cuts are chosen in the left half-plane Re(s) < 0. The
integration is carried out in the right half of the complex
s plane along the so-called Cagniard contour C (see Figure 3)
specified by the requirement that the function t(s) is real
along it:

Im t sð Þð Þ ¼ 0: ð4Þ

[19] The integration path stays away from all poles and
branch cuts and covers a part of the Cagniard contour
between s = 0 and the point smax defined by the causality
condition t(smax) = t. The Cagniard contour plays a key role
in the derivation of the integral representations (1), (2).
However, once the formulas (1), (2) are obtained and the
endpoint of the integration smax is defined, the contour can
be analytically deformed. For example, it may be deformed
to an arc connecting the origin s = 0 with smax. To make this,
the function E(t) must have an analytical continuation into
the complex plane. From the numerical point of view,
integration along an arc is more advantageous since there
is no need to search for the Cagniard contour (except the
point smax).
[20] Typical time variations of magnetic field components

predicted by the direct solution (1), (2) for a sample
reconnection pulse E(t) = Ct2 exp(	at) are shown in

Figure 4. To find out the influence of plasma compressibil-
ity, the corresponding model variations in an incompressible
plasma are presented simultaneously. The comparison be-
tween the model curves leads to the following conclusions:
(1) Bz and Bx variations show opposite tendencies: the
amplitude of the first pulse in the Bz variation increases,
whereas in the Bx variation it decreases if the compressibil-
ity is taken into account; (2) the perturbation pulse in a
compressible plasma is more localized in time; (3) the
commencement of the compressible perturbation signal is
better pronounced.
[21] The differences/similarities between the model curves

may be explained as follows. The form and amplitude of the
variations depend on the geometry of the FR region (since
the perturbations are caused by field line bending around
the FR bulge) and on whether plasma is compressible or
not. In a compressible plasma the width of the FR region
(in the direction normal to the current sheet) is g/(g 	 1) =
2.5 (g = 5/3) times smaller than in an incompressible one.
As a result, the Bx compression over the bulge becomes
less efficient (see the smaller amplitude of the compressible
Bx variation in Figure 4). Being able to be compressed, a
compressible plasma is less sensitive to the bulge move-
ment. It means that magnetic field lines start to bend around
the bulge later and hence with greater inclination to the
current sheet. This explains the shorter duration of the
perturbation signal in a compressible plasma and its more
sharp commencement. Owing to a significant curvature of
bending field lines the arising Bz component grows more
rapidly and reaches greater values at the leading front of the
bulge (see the greater amplitude of the first pulse in the
compressible Bz variation in Figure 4).

Figure 3. Cagniard contour, calculated for the parameters
x = 2, z = 0.5 (dimensionless values). The point indicates
the location of the nearest poles.

Figure 4. Sample reconnection pulse and the correspond-
ing magnetic field variations at the point x = 2, z = 0.5.
Solid lines correspond to a compressible plasma (b = 0.1)
and dotted lines correspond to an incompressible one.
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2.2. Inverse Problem

[22] For the inverse problem it is especially important that
the direct solution can be written in the form of a convo-
lution. In order to get the convolution representation, the
Cagniard contour is again of key importance. Indeed, if the
integration in (1), (2) is carried out along the Cagniard
contour, it may be done with respect to the real variable t
instead of the complex variable s. The lower integration
limit t(s = 0) = z/u defines the earliest possible commence-
ment of the perturbation signal (carried by the fast wave
propagating with the speed u in the direction perpendicular
to the current sheet). Since no disturbance can be detected at
the point (x, z) before the moment z/u, there is no contri-
bution to the integral from 0 to z/u and hence the lower limit
may be set to zero:

Bz t; x; zð Þ ¼
Z t

0

dtKz s tð Þð ÞE t 	 tð Þ: ð5Þ

[23] Here a short notation Kz for the convolution kernel is
introduced:

Kz sð Þ ¼ B0

p
Re

~L

Lþ ~L
Q
is

t0s

� �
: ð6Þ

[24] The derivative t0s has appeared owing to the trans-
formation of the variables dt = t0sds. The kernel is
presented as a function of the variable s because an explicit
expression for K(t) is complicated: the fourth-order
equation (3), from which the inverse function s(t) can be
found, has four roots and only one of them should be
chosen.
[25] The kernel of convolution characterizes the response

of the medium to an elementary, delta-shaped pulse of
reconnection. It depends not only on time and the point of
observation (x, z) but also involves information about the
medium. The compressible asymmetric kernel is much more
complicated than the incompressible symmetric one. The
analysis of the kernel may resolve all waves and shock
structures appearing in the model of Petschek-type recon-
nection [Penz et al., 2006].
[26] If the temporal profile of the magnetic field pertur-

bation Bz(t) at some observational point (x, z) is known, the
relation (5) can be seen as an integral equation for the
unknown function E(t). A standard trick to solve an integral
equation of convolution type is to perform a Laplace
transform with respect to time. In Laplace space, (5) turns
to be the simplest algebraic equation, from which the
Laplace image of the reconnection electric field can be
found as

E pð Þ ¼ Bz pð Þ
Kz pð Þ : ð7Þ

[27] According to the definition of the direct Laplace
transform, the Laplace image of the kernel is

Kz pð Þ ¼
Z1
0

Kz s tð Þð Þe	ptdt:

On can see that the integration here should be done with
respect to the real variable t, that is, along the Cagniard
contour. The possibility to deform the contour does not exist
because the function (6) has no analytical continuation into
the complex plane.
[28] To find the Cagniard contour (the function s(t) for

real t) it is necessary to solve the forth-order algebraic
equation (3) and then to choose between four roots an
appropriate one (which lies in the first quadrant). Another
way is to write equation (3) in a differential form, that is, to
demand that the increment of t along the contour must be
strictly real:

Im
dt
dl

� �
¼ 0; tjl¼0 ¼ z=u;

where l is the length parameter along the Cagniard contour.
The latter leads to a set of two first-order differential
equations (written here as one complex equation):

ds

dl
¼ eif; f ¼ arctan

x	 Im q0s
� 	

z

Re q0s
� 	

z

 !
;

which define increments of real and imaginary parts of the
variable s along the contour. Being supplemented with the
initial condition s(0) = 0, this set of differential equations
gives an alternative way to find the Cagniard contour. From
the numerical point of view, this way is more convenient
then the choice between the roots because some of the roots
are often very close to each other and a wrong root may be
chosen. Besides, a numerical solver of differential equations
produces an adaptive grid, which is needed for further
calculations.
[29] A typical Cagniard contour is shown in Figure 3.

First the contour goes along the imaginary axis, then it turns
to the right. The turn itself is smooth (though it is not visible
in a given scale). The vicinity of the turn is the most
important part of the contour and should be calculated with
high accuracy since the kernel K(s) has extreme values here.
The nearest four poles are located in the vicinity of the point
s = i. They are not resolved in the scale of Figure 3 and are
marked by one point. It should be noted that the Cagniard
Contour, being defined by the function s(t), depends on the
point (x, z), for which the Laplace image of the kernel is
calculated.
[30] Now, after the formalism has been discussed, we

may return to the main expression (7) and apply it to real
spacecraft data, namely, to magnetic variations associated
with FTEs. The propagation velocity of FTE structures is
several hundred km/s, whereas the spacecraft velocity is
only some km/s. Therefore the spacecraft can be considered
as fixed in space. A magnetic temporal profile measured by
a spacecraft consists of a background magnetic field and a
variation. The Laplace image Bz(p) entering the expression
(7) has to be calculated for the variation extracted from the
magnetic temporal profile.
[31] If the spacecraft coordinates (x, z) (with respect to the

reconnection site) are known, the inverse Laplace transform
of (7) immediately gives the reconnection rate E(t). In
reality, the relative spacecraft location is unknown. To find
it, some additional MHD quantity (for example, Bx) is
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desirable. The algorithm of reconstruction works in the
following way. For a given time series Bz(t) and some trial
position of the reconnection line one get some reconnection
rate ~E(t). Since the trial coordinates (x, z) are not correct, the
rate ~E(t) usually is negative on a part of the time interval.
The real rate must be positive. Therefore the absolute value
j~E(t)j is taken and the Bz and Bx variations are calculated
from it (via the direct solution). Minimizing the standard
deviation between the calculated Bz, Bx and those measured
by the spacecraft, one can find the optimal reconnection rate
E(t) and the position of the reconnection line (x, z) relative
to the spacecraft. Minimization is done by a global simu-
lated annealing method.
[32] The reconstruction code has been thoroughly tested

for consistency between direct and inverse solutions: it is able
to reconstruct E(t) and the distance (x, z) with high accuracy
for a wide range of observational points: 0.05 < z/x < 2.5.
Such angular restriction may be explained as follows. The
quality of reconstruction depends on the amplitude of the
signal: the larger the amplitude, the better the reconstruction
results. The amplitude of the signal decreases with z distance
and increases with x distance (since the volume of FR region
is growing while the region is traveling along the current
sheet away from the reconnection site). As a consequence,
the reconstruction fails for z/x > 2.5. The restriction from
below has another origin: in this case the Cagniard contour
approaches very close to the poles of the kernel and the
accuracy of the calculations falls down.
[33] For real spacecraft data the specified range of appli-

cability should not be perceived literally. We have to remind
that the method is based on simplifying assumptions (a
homogeneous background with zero normal component of
the magnetic field and an infinitely thin current sheet),
which are never satisfied with high accuracy.
[34] The improved reconstruction technique may be ap-

plied both to symmetric and asymmetric events. A test

example of the reconstruction is given for an asymmetric
configuration with the background magnetic field B0 = 2 in
the upper half-space and ~B0 = 	1 in the lower half-space.
The magenta curve in Figure 5 shows the original electric
pulse used as an input for the direct problem. The
corresponding magnetic field variations calculated for the
points x = 2, z = 0.5 in the upper half-space and x = 2, z =
	0.5 in the lower half-space are presented in Figure 6 by
magenta (Bz) and cyan (Bx) curves. The amplitude of
variations is smaller in the upper half-space, where the
background magnetic field is greater (B0 = 2). The reason
is that the enhanced magnetic pressure limits the expansion
of the disturbing structure (FR region). The electric pulse
reconstructed from the upper half-space signal is shown by
the black curve in Figure 5a. The pulse reconstructed from
the lower half-space signal is presented in Figure 5b.
Naturally, the pulses (corresponding to different input data)
are the same. One can see an excellent agreement between
the original (thick magenta curve) and the recovered (thin
black curve) electric fields. The accuracy of reconstruction
crucially decreases for the points lying outside the range of
applicability. Some deviation can be already seen, for
example, for the point x = 2, z = 5, which corresponds the
upper restriction z/x = 2.5. Figure 7 shows the distant (from
the current sheet) magnetic field variations in the upper half-
space (x = 2, z = 5) and in the lower one (x = 2, z = 	5).
Figure 8 presents the corresponding electric field. The
deviation between the original and the recovered curves is
visible both in the magnetic perturbations and in the electric
pulse.

3. NFTE on 26 September 2005

[35] The generalized method has been applied to NFTE
recorded by Cluster spacecraft in the near-Earth magnetotail
on 26 September 2005. Application to nightside FTE

Figure 5. Original (thick magenta line) and the recovered
(thin black line) electric pulses, showing (a) the pulse
reconstructed from the upper half-space signal at the point
x = 2, z = 0.5 and (b) the pulse reconstructed from the lower
half-space signal at the point x = 2, z = 	0.5.

Figure 6. Original and the recovered magnetic field
variations at the points (a) x = 2, z = 0.5 and (b) x = 2, z =
	0.5. The original variations are shown by magenta (Bz)
and cyan (Bx) lines and the recovered variations (i.e.,
corresponding to the recovered electric field) are shown by
black line.
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(which is symmetric) cannot demonstrate the advantage of
the extension to an asymmetric configuration. For this
purpose a series of dayside FTEs has been examined in a
separate paper [Penz et al., 2007]. The present paper
demonstrates the difference between compressible and in-
compressible variants of the reconstruction method.
[36] In contrast to the events analyzed in the previous

paper [Semenov et al., 2005], which all took place in
the midtail (29–31 Re from the Earth), the event on
26 September 2005 is a rare example of near-Earth recon-
nection that occurred at a distance r < 14 Re. The event was
carefully investigated by Sergeev et al. [2007]. Observa-
tions obtained owing to a fortunate spacecraft configuration
(thin current sheet, Hall quadrupole By magnetic field, fast
tailward outflow of plasma carrying southward Bz, particle
acceleration) reject any doubts that reconnection took place
at r < 14 Re.
[37] On 26 September 2005, between 0800 and 1000 UT,

the Cluster spacecraft moving in a region 14–16 Re in the
magnetotail detected three tailward propagating FTE-like
disturbances, which were interpreted by Sergeev et al.
[2007] to be an evidence of near-Earth reconnection. The
first event, around 0843, was taken as a test bed for the
reconstruction method (Figure 9). At this time all four
Cluster spacecraft were located above the current sheet
and near the 23 h MLT meridional plane. Since 23 h MLT
was the central longitude of the activation [Sergeev et al.,
2007], we may consider 3-D effects to be minimal and
apply our 2-D reconstruction technique. The later two
events are not favorable to apply the method since Cluster
spacecraft were crossing the current sheet and distinct
magnetic variations can not be obtained.
[38] Around 0843 UT, a strong southward Bz (down to

	15 nT), intense GSE Ey (up to 10 mV/m) resulting in
tailward outflows with vx � 400 km/s, and a strong
energetic electron beam (at energy >50 keV) were observed
at the spacecraft C2, which was located closest to the neutral
sheet [Sergeev et al., 2007]. At the same time other Cluster
spacecraft located further away from the neutral sheet did
register neither the energetic electron beam nor the fast

flows. Apparently, the spacecraft C1, C3 and C4 were
staying in the inflow region, whereas C2 crossed the
reconnection separatrix and entered the outflow region.
[39] The simplest version of reconstruction presented by

Sergeev et al. [2007] was based on Bz variation only. The
recovered peak rate was �4 mV/m, the reconnection pulse
duration was �100 s, and the location of X-line was around
13–14 Re in the tail. Here we give a more detailed
investigation: reconstruction based on both Bz and Bx

variations and a comparison with the results of the incom-
pressible variant of the method.
[40] The reconstruction procedure has been applied to

three Cluster spacecraft C1, C3, and C4, separately to each
of them. The spacecraft C2 has been excluded from con-

Figure 7. Original and the recovered magnetic field
variations at the points (a) x = 2, z = 5 and (b) x = 2, z = 	5. Figure 8. Original (magenta line) and the recovered (black

line) electric pulses, showing (a) the pulse reconstructed
from the upper half-space signal at the point x = 2, z = 5 and
(b) the pulse reconstructed from the lower half-space signal
at the point x = 2, z = 	5.

Figure 9. Event on 26 September 2005, observed by four
Cluster spacecraft. The interval, chosen for reconstruction,
is marked by the vertical lines.
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sideration because it was located inside the outflow region
and the method is valid only for the inflow region (since it is
based on the inverted solution in the inflow region). To
prepare the input data, Cluster measurements Bz(t) and Bx(t)
have been cut out around 0843 (0842:33–0845:50 for C1
and 0842:00–0844:47 for C3–C4), smoothed, vertically
shifted (to subtract the background), and normalized (with
respect to the magnetic field value 40 nT and the time
interval 60 s). Minimization of the total standard deviation,
that is, the sum of standard deviations in Bx and Bz

components, was done with respect to both coordinates x
and z. A priori information were the spacecraft GSM
coordinates and the Alfvén velocity, which is a basic unit
for normalization of MHD equations and is needed to
convert the results to the dimensional form. The GSM
positions of Cluster spacecraft relative to C2 (closest to
the neutral sheet) were used to set the lowest possible
boundaries for the z distance, which have to be set for the
minimization routine: 0.32 Re for C1, 0.43 Re for C3, and
0.60 Re for C4 (see triangle markers in Figures 10 and 11).
The Alfvén velocity was estimated from the tailward
propagation of the magnetic perturbations: a time delay of
about 10 s over �9000 km separation distance between C3/
C4 pair and C1 gives a velocity of �900 km/s. It should be
mentioned, that the accuracy of the reconstruction depends
directly on the accuracy of the estimation of the Alfvén
velocity. A deviation of the Alfvén velocity from a constant
value (owing to violation of the background homogeneity)
reduces the accuracy of the method.

[41] Figure 12 shows the reconnection pulse recovered
from C1, C3, and C4. The peak rate values vary from 3.7 to
4.8 mV/m and the pulse duration varies from 2 to 3 min.
The deviation between the input data and the recovered
signal can be seen in Figure 13. Presented are the curves for
Cluster C3, but they are typical for all spacecraft. The
agreement in Bz is excellent, but the amplitude of Bx is
underestimated.
[42] There is also some variability in the X-line location:

	9.3 Re for Cluster C1, 	8.8. Re for C3, and 	11.3 Re for
C4 (Figure 10). As already mentioned, the total deviation
was minimized with respect to both coordinates x and z. In
all cases the minimizing procedure converged to the lowest
z boundary (as if the spacecraft C2 was located in the
nearest vicinity of the current sheet). Nevertheless, we do
not pretend to give an accurate estimate of z distance for this

Figure 10. Cluster spacecraft arrangement (empty markers)
and the locations of X-line recovered via the compressible
procedure (filled markers).

Figure 11. Cluster spacecraft arrangement (empty mar-
kers) and the locations of X-line recovered via the
incompressible procedure (filled markers).

Figure 12. Reconnection electric field reconstructed from
Cluster data by the compressible procedure.

Figure 13. Input signal from spacecraft C3 (solid line) and
the signal recovered via the compressible procedure (dotted
line).
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event because the analysis of intermediate minimization
results has shown (see Figure 14) that the value of the total
standard deviation s is much more sensitive to the
x distance (excluding the range of very small x distances,
where the z dependence may be dominant). One can see
that the x minimum is well pronounced and, in contrast, the
z minimum is not.
[43] To complete the investigation we processed this

event by the incompressible routine. The results obtained
can be seen in Figure 15 (the reconstructed electric field),
Figure 11 (the location of X-line), and Figure 16 (the
deviation between the real and the reconstructed data).
From the comparison with the compressible results we
may conclude the following: (1) The peak values of the
reconnection rate are systematically �1 mV/m smaller in
the frame of the incompressible approximation. (2) The
duration of the reconnection pulse is nearly the same.
(3) The locations of the X-line are systematically shifted
farther from the Earth in the incompressible limit: 11–12 Re

instead of 9–11 Re. (4) The quality of the reconstruction of
the Bx component is nearly the same.
[44] The differences between the results reflect some

general tendencies typical for the model. To fit the input
spacecraft data with more broad incompressible model
curves we need a smaller distance between the reconnection
site (11–12 Re in the tail) and the point of observation (14–
16 Re) (because the volume of FR bulge is growing while
the bulge is traveling along the current sheet away from the
X-line, and hence the duration of the perturbation signal is
getting longer). The smaller electric field value results from
the necessity to compensate the greater Bx compression
typical for the incompressible limit.

4. Conclusion

[45] In the present paper the reconstruction method de-
veloped recently by Semenov et al. [2005] has been extend-
ed to a compressible plasma and to a configuration with
asymmetric plasma and magnetic field parameters. The
method allows recovering the reconnection rate and the
location of the X-line from single-spacecraft magnetic data.
[46] The improved reconstruction technique has been

applied to a nightside flux transfer event recorded by
Cluster spacecraft in the near-Earth magnetotail on
26 September 2005. The results obtained (the rate 3.7–
4.8 mV/m, the distance 9–11 Re) have been compared
with those calculated in the incompressible limit (the rate
2.7–3.8 mV/m, the distance 11–12 Re). The differences
between the average peak values of the reconnection rate
(3.0 mV/m and 4.1 mV/m) and the average X-line locations
(	11.5 Re and 	9.8 Re) reconstructed with and without
the incompressible approximation are comparable with the
variability of the results from different Cluster satellites.
The systematic distinction between compressible and in-
compressible results do exist, but it is not large allowing to
conclude that the compressibility is not crucially significant
for the event considered.

Figure 14. Total standard deviation s as function of x and z
for Cluster C4.

Figure 15. Reconnection electric field reconstructed by
the incompressible procedure (dashed lines) in comparison
with compressible curves (solid lines).

Figure 16. Input signal from spacecraft C3 (solid line) and
the signal recovered via the incompressible procedure
(dotted line).
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[47] Being extended to asymmetric configuration, the new
technique can be applied to quasi-two-dimensional magne-
topause reconnection events. Analysis of two sequences of
FTEs seen at the high-latitude magnetopause by the Cluster
spacecraft on 14 February 2001 and on 21 January 2001 is
already carried out by Penz et al. [2007].
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A. Balogh, and H. Réme (2006), The structure of flux transfer events
recovered from Cluster data, Ann. Geophys., 24, 603–618.

Heyn, M. F., and V. S. Semenov (1996), Rapid reconnection in compres-
sible plasma, Phys. Plasmas, 3, 2725–2741.

Heyn, M. F., H. K. Biernat, R. P. Rijnbeek, and V. S. Semenov (1988), The
structure of reconnection layers, J. Plasma Phys., 40, 235–252.
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